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the definition (43) leaves S)(x) m-dimensional, but
it is clear that the subsequent transformation of
Sr(x) under Ag requires the transformation of an
(m—r)-dimensional J-function as in § 2. The equiv-
alence of (A1A2)S and A;i(A2S) with A; singular
should follow for the same reason.

(iii) In so far as the point sets of (8) are idealizations
of a real situation in which electron density S(x)>0
at almost all points of space, it is natural to enquire
how far the operations of convolution and affine
transformation commute for general sets S(x). If T
is non-singular and S*=TS is defined as in (6), it is
clear from the argument leading to (7) that more
generally

T(8:%) = SFS* (44)

for all integrable sets S1, Sz for which the convolution

818z exists. The following is a proof of (44) when
T is singular and S; and S: are not periodic and
have convergent integrals, that is have finite total
weights.

By a proper choice of basis in the m-dimensional
space, A of rank r<m is completely reduced to
A® 4+ Alm-1_ where Alm-1=0(m-r), Let now

g(x) = { S(x)dxm-n.
Then using (43) and the interpretation (6)
¥ = [det A0)|~1g,((AC)-1x¢)§(x(m-)
since from (8) to (9)

0(m~r)5(x(m—r)) = §(x(m-n)
Then

ON HOMOMETRIC SETS. II

S¥S¥ = (A"} d(x(m—n) .
Also

A5,
= {A(r) SS ,S’l(y)Sz(x__y)dydx(m—r)}é(x(m—rl)

= {A‘”S Si(y) S Sz(x—y)d(x—y)<"'-”dy}c5(x<’”">)

—

= {A‘f)glgg}é(x(m—'))

which proves the theorem.

The reversal of the integrations puts certain further
conditions on 8; and 8S:; e.g. sufficient conditions
would be continuity of these functions and uniform
convergence of their integrals if the range of integra-
tion is all space or all of some infinite sub-space.
These conditions obtain for any real distribution of
electron density.
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General spot-size correction for inclined incident beam: Weissenberg method. By KarHipew

LonspaLrE, University College, London W.C. 1, England

(Received 7 May 1963)

D. C. Phillips (1954, 1956) has derived formulae giving
the reflexion spot area variations observed on upper-level
Weissenberg photographs. These apply only to the
normal-beam and equi-inclination methods. Since the
formulae involve the axial coordinate { which is depen-
dent upon the wave-length, it follows that the Phillips
correction cannot be applied to Kf spots if the incident
beam is set in the equi-inclination position for the K«
radiation. It is sometimes, however, very desirable to
make use of the intensities of the Kf spots, for example
if the Ko are too strong, if they are just outside the

limiting sphere or if they are enhanced by the Renninger
effect. It seems necessary, therefore, to give the Phillips
equations for the general case.

The nomenclature used is that of section 4-3 of the
International Tables for X-ray Crystallography (herein-
after 1.7.) Volume II (1959), which differs from that of
Phillips mainly in using ¢ for the angular coordinate
instead of w. The method consists in determining the
reflexion-spot length € (parallel to the rotation axis)
without any camera translation; and then of determining
the additional + A introduced by the movement of the
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camera during the crystal rotation 4¢. The angular diver-
gence of the primary beam is taken as 2x, u is the incli-
nation of the primary beam to the equatorial plane,» is
the angle between the nth layer-line generator and the
equatorial plane.

Determination of reflexion-spot length ¢ on a sta-
tionary cylindrical film, radius r,, axis parallel to
rotation axis
The mean and limiting reflexion cones have semi-
vertical angles 3z —v, %n —vy, 7 —v, where siny ={ +sinu

(equation (1), p. 175, I.7. Vol. II)

sinv,={+sin (u+a)=sin v+« cos u
since « is small

sinv,={+sin (u—a)=sinv—xcosu.
Then
L=r, (tan v, —tan v,) +1
where
l=2xrysec u

is the length of the crystal elementt (r, =divergent-beam
‘source’ to crystal distance). .
sin » sin »
L=r L —2 | +1
! [(1 —sinZ;)} (1 —sin?y,)?
[ (sin?y; —sin?y, sin?,]} — (sin?v, —sin?y, sin?v,)} .
1 (1 —sin2p, —sin?v, +sin2v, sin?v,)}
1 2 1 2

Now since « is small

sin? », =sin? v + 2« sin » cos u
sin? v, =sin? v — 2x sin » cos u
sin? », sin? v, =sin* »

r .
f=—_— [(sin? v —sin% » + 2« sin v cos u)¥ —

" cos? . . .
4 (sin? v —sin® » — 2u sin v cos u)i] +1

_n sinv[(l + 20 cos u )é_ <1 2 cos_y)if]
cos v sin » cos? v sin » cos? ¥
But if x is small (1 +z)} =1 42/2
L = 2r,x cos ufcos® v +1 (1)
2
= 20 sec u [ﬁﬁ% + 7‘0] (2)
= 2« sec u[r, cos? ujcos® v +ry] . (3)

For the normal-beam method (u=0) this reduces to
equation (22) of Phillips (1954).

For the equi-inclination method (sin u = —{/2= —sinw)
equation (1) becomes

Q=2rx/cos? v +1 where cos?v=(1-{2/4)

which is (sec ») times equation (26) of Phillips (1954).

T Notes (1) r, may have to be determined experimentally
by taking photographs on the same film in (stationary)
cameras of different radii, but with the same collimator
system; or by measuring the variation of spot size in a
specially designed film pack. The ‘source’ is not necessarily
coincident with the collimator pinhole. The value of 7, is im-
portant and must not be assumed.

(2) Phillips (1954) gives {=2xMR,; but this only applies in
the normal-beam method.
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Calculation of angular range of reflexion, 4¢

Following Phillips, 4¢ =(cos ¢, —cos g,)/sin ¢ when Ay is
small.
From equation (3), p. 176 of I.7T'. Vol. II

2 2 2 1
cos (p:c—w where (24 £2=4sin? 0 =d*?
2& cos u
sin p=_————[4£2 cos? u—4(2sin? u
2% cos — (L34 E0)(? + £ +4L sin )]k
—- [ d*2 2 ) —d*2y — 4213
2§cos,u[d (4 cos? u—4L sin u —d*?) —4(?%]
cos 2+ +20sin (u+a) d*2+20sin A
= 2¢ cos (u +«) T 2tcos A
s _ P+ +2sin(u—a) d**42[sin B
S P T o cos (u—w)  2Ecos B
A d*? (cos B —cos A) + 2 (sin A cos B —sin B cos 4)
¢=

2& cos A cos B sin ¢

_ 2d**sin §(4 + B) sin (4 —B) +2{ sin (4 —B)
- & [cos (A + B) +cos (A —B)] sin ¢

d*? sin u sin « +{ sin 2«

& (cos 2u +cos 2x) sin ¢

*2 o1
= 2«x d—w— since « is small
2£ cos? u sin ¢
—9 sec u[d*2 sin u + 2]
= 2% 1% (4 cos? p —4C sin u —d*?) — 4723
sec u[(62+£2) sin p +2¢]

(C2+&%)(4 cos? u —4¢ sin pu — {2 —£2) —442]3°
For the normal-beam method, this reduces to Phillips’s

(1954) equation (8); for the equi-inclination method,
it reduces to

of
dp = 5 [4= (4 seop =20

(4)

(5)

=20¢[

cos 0

which is (sec u) times Phillips’s (1954) equation (18).

Reflexion-spot length with camera translation

Taking the instrument constant C, of the Weissenberg
camera as 2 when & is measured in millimetres and ¢
in degrees, AL =A¢p/2.

Hence
L+A48 180 d¢ 180
—= T = T =14+ ==
g it eclia

(d*2 sin p +20)[1 — (£ +sin p)2]3/
x [d*2(4 cos? u —4¢ sin u —d*2)
— 42213 [, cos? p+ro[1 — (¢ +sin 1)]3/2]
Since d*2=4 sin% 0 and { =sin » —sin x4 this expression
may also be written as
LA 180
=1+
g 2n

[(2 sin? 6 — 1) sin u +sin v] cos® v

. (6)

. (7)

[4 sin? 0 (cos? § —sin v sin u)
— (sin » —sin u)2]%(r, cos? u +7, cosd v)



310

For upper layers of the normal-beam setting (u=0)
formula (6) becomes

8548 180 L1 —g2)

2 w [48 — (L + &)1 [y +ro(1-2)%2]
which is Phillips’s equation (29), so that the ordinary

normal-beam charts can be used with { and & referred
to the KB reflexions. Or, in terms of » and 0

2iAS_1+E? sin v cos3 »
f 77 27 (4sin? 0 cos? 6 —sinZ )} (r, +7, cos®v)
(8)
When p= —» (equi-inclination setting), then {=2sin v

= —2sin u and the expression (6) becomes

L+48 | 4. 180 [4¢ —C(L2 +£2)](1 —}22)%2
2 T4 [((P+8)(4— &%) —40%)h
X [ry(1 = 382) +ro(1 —§£2)%/%]
+ 180 G St 0L et 1 50 LA
T Am (48 =8 - E) [ + (1 - §2)E]
L1800t —g)h
T dm E[2r) +7o(4—02)1]

This expression, which is equivalent to that of Phillips’s
equation (30), is rather simpler in terms of » and 6

2+42 180
=1%

sin » cos ¥ cos 0

9)

e ~ 27 (cos? v —cos? 0)F(r, + 1y cOS V)

Summary of formulae for upper-layer spot exten-
sion or contraction for Weissenberg camera radius
7y, constant C, = 2: camera axis parallel to axis of
crystal rotation and source-to-crystal distance 7,

General case

L4t | 180
2 7 T 27 [45sin? 6 (cos? O —sin v sin p)

— (sin v —sin p)2]}(r, cos? u +r, cos? v)

cos® v (sin » — cos 26sin u)

Normal-beam setting

g+48 | 180
@ 77 27 (cos?y—cos? 20)(r, +7, cos® )

sin » cos® v

Equi-inclination setting
2+48 180 sin v cos v cos 6
Q@ 7 27 (cos?v—cos? 0)k(r, + 7, cO5 ) |

Anti-equi-inclination setting

L+48 180
=1+ — - S
Q 27 (cos? » —sin2 6)3(r, + 7, cos »)

sin » cos » sin
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Flat-cone setting
L+48 _ 4 180
& 7 27 (cos?u—cos? 20)3(r, cost u+7y)

sin u cos 20

In all cases the correction may be applied by combining
it with the Lorentz correction which in each case may be
expressed as follows:

General case
L~1=cos v cos usin ¥
where

2 2 2
cos? v +cos? u —&
cos ¥=——"—

2cosvcospu
&2 =4 sin? 6 — (sin v —sin u)?

from equations (1), (2), (4) of section 4.3.2.1 of I.7.
Vol. IT.

Hence

L-1=[4sin? § (cos? 6 —sin » sin p) — (sin » —sin u)%]}
and

Lx42 1+ 180 L cos® ¥ (sin » —sin u cos 26)

2 T 2z (ry cos? u +1, cos® )

Normal-beam setting
L-1=(sin? 20 —;2)} = (cos? » — cos? 26)}

L+ AR
=1+

Q T 21 7 +rycosdy

180 L sin v cos® v

Equi-inclination setting
L-1=2 cos 6 (cos? » —cos? 0)%
2+48 180 L cos » sin » cos?

=14 — —
L k4 7y +17e COS P

Anti-equi-inclination setting
L-1=2sin 6 (cos® v —sin2 §)%
L+A48
=1+
2 I 4

180 L cos v sin v sin? 0

7y +7¢ COS ¥

Flat-cone setting
L1 =(cos? u —cos? 26)}
Q

L+4 _1+180Leos2ﬂsin,u
@ T 21 rcostu+r,
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